

Lomonosov Moscow State University

Faculty of Computational Mathematics and Cybernetics

Department of Automation Systems of Computer Systems

Vasilenko Anatoly

521 group

Network applications requirements to lightweight

virtualization for network modelling usage

Moscow, 2016

2

1 Contents

1 Contents .. 2

2 Introduction .. 3

3 Introduction to the subject area. Definitions .. 3

4 Virtualization ... 5

5 Simulation and emulation ... 6

6 Linux Containers .. 8

 General information about Linux containers .. 8

 Internals of Linux Containers .. 8

 Namespaces .. 9

 Cgroup ... 11

 Namespaces and Cgroups technologies together ... 12

 Linux Containers (LXC) as an approach to virtualization ... 14

 Docker - lightweight virtualization management system ... 16

 Comparison of Linux containers and virtual machines ... 19

 Containers in modern world ... 20

7 Container-based modelling ... 21

 Examples of existing modelling systems ... 21

 Basic requirements of modelling systems to lightweight virtualization 22

 Lightweight virtualization capabilities of controlling resource allocation 24

8 Conclusion ... 24

9 References ... 25

3

2 Introduction

Modern IT world continues to evolve, creating new concepts. In particular,

despite the already great age of this industry, it is happening in the world of

network technologies. The most striking examples of contemporary trends in the

world is the concept of SDN and NFV, which are associated with the other trend of

general IT: virtualization.

For networking industry virtualization technology based on containers can be

used in two ways: running abstract application within the container, which

generates traffic to be routed, and running virtualized network service within the

container, which purpose is to handle the traffic passing through it.

These trends are in active development and technology continue to improve,

gaining new functionality.

The goal of this paper is

1. Exploring the possibilities offered by the containers and matching them

with the requirements of applications. If possible identifying drawbacks

of lightweight virtualization applied to network modelling.

The tasks that have to be solved to achieve the goal:

1. Explore the possibilities and shortcomings of modern lightweight

virtualization technologies and compare them with the possibilities of a

fully-fledged virtualization.

2. Identify the possible usecases of lightweight virtualization in today's

world.

3. Examine the role of lightweight virtualization for modeling networks,

and mark its functional requirements.

The work structure is based on solving the established tasks to achieve the

goal of the essay after the preliminary acquaintance with the subject area. With

every step, if possible, will be revealed disadvantages of modern virtualization

technologies that are essential to run applications of various kinds, particularly in

network simulation. In conclusion, the necessary requirements for the simulation

related to lightweight virtualization will be stated.

3 Introduction to the subject area. Definitions

Virtualization refers to the act of creating a virtual (rather than actual)

version of something, including virtual computer hardware platforms, operating

systems, storage devices, and computer network resources.

4

Virtual machine is an emulation of a particular computer system. It is

usually software-based and uses different types of hardware acceleration

technologies: Intel-VT, AMD-V.

As the concept of virtualization technology grew, people work in the direction

of overhead minimization. Hardware support has been created and various

hypervisors were developed (KVM, XenServer, VMWare ESXi ...), systems

dealing with the management of virtual machines for deployment and support of

cloud computing (OpenStack, VMware vSphere ...) were developed.

An idea of virtualization at OS level appeared: containers (LXC (Linux

Containers), OpenVZ, FreeBSD jails, Solaris zones). On its basis community

created management systems like Docker (based on LXC, libcontainer) or

Virtuozza (based on OpenVZ).

Linux Containers (LXC) is an operating-system-level virtualization

environment for running multiple isolated Linux systems (containers) on a single

Linux control host.

Docker is an open-source project that automates the deployment of

applications inside software containers, by providing an additional layer of

abstraction and automation of operating-system-level virtualization on Linux. It

allows you to "pack" the application with all its surroundings and dependencies in

a container that can be moved to any Linux system supporting Docker.

NFV (Network Function Virtualization) is a network architecture concept that

uses the technologies of IT virtualization to virtualize entire classes of network

node functions into building blocks that may connect or chain together to create

communication services.

In this paper, I will address issues of simulation and emulation of network

nodes, so I will define the necessary terms. Simulation is an imitation of any

physical process using an artificial system. Emulation is a set of hardware or

software designed to copy the functions of a computer system (the guest) on the

other (the host), different from the first system, to emulate the behavior as close as

possible to the behavior of the original system. Thus, the purpose of the simulation

is to produce an imitation of any object for an external observer, and the purpose of

emulation is the most accurate reproduction of the internal behavior. The essential

difference leads to a difference in their purpose: the main objective of the

simulation is an API (Application Programming Interface) simulation allowing

development of external systems using its API. Whereas emulation is usually used

5

to launch an existing object, but under different environment1. Emulation also

solves the problem of the simulation however tend to be slower.

Unlike the simulator, emulator has its own internal clock, counting the steps,

according to which the system is operating. This may allow modifying the

performance of the emulated system by a factor k, wherein if the performance of

the external component does not change, in terms of an emulated system, and if

everything is compatible, it would appear for system that environment performance

respectively lower or higher by a factor of 1/k.

The network model consists of the following main parts: the description of the

topology and resources, the description of the data streams and channel load,

description of the traffic processing ([3]).

4 Virtualization

The main advantage of virtualization is the ability to run multiple independent

virtual systems on single computer.

After years of development, virtualization technologies have the following

advantages:

1. Implementation on a single computer system, several different virtual

systems (it allows separation of resources between virtual systems and

allows applications to run in their environment).

2. Isolated execution of applications without ability to influence other

systems. (security)

3. Emulation of different architectures for computer systems.

4. Ease of creating, deploying, and even online migration of systems.

(flexibility)

5. Automate management of multiple virtual systems2. (flexibility)

6. Using the appropriate drivers and hardware acceleration technologies,

the hypervisor overhead in general-purpose systems dropped down to

about tens of percent3. (performance)

The following features should guarantee this:

1 Examples of emulators are: hypervisor QEMU, FPGA (Field-Programmable Gateway)
2 Exists many of such projects. The most successful are OpenStack, Docker, Amazon Web Services EC2, Virtuozzo.
3 Speaking of reasonable performance, I am referencing hypervisors that do not emulate different platform from
host’s platform (as an examples can serve hypervisors VMware ESXI, KVM, but not QEMU)

6

1. Modeling necessary logical resources and possibility to hand over

direct control under certain physical resources to a particular virtual

machine.

2. Management of physical resources (CPU, network adapters, memory,

storage), control and restriction of the resources use.

Considering virtualization within the containers, there is a restriction by

design: as the containers are working on the operating system level, the guest

cannot use different operating system.

Note that hypervisors have been created primarily for the purpose of isolating

the load (control of resources) and the creation of a virtual environment, but

strictly speaking, it is the operating system responsibility, and therefore

virtualization on its level is more appropriate.

In practice, virtualization is often used for the following purposes:

organization of data centers (in particular for provisioning IaaS, PaaS, and SaaS

services), organization of testbeds, developers use and use for educational

purposes.

5 Simulation and emulation

The simulation or emulation is one of the clearest examples of lightweight

containers use cases in the networking industry. On this basis, different network

models created, including a variety of systems and services. Its purposes can be

categorized as follows (in different experiments, goals can be mixed):

1. To provide a network model to a certain software or hardware devices

to be tested.

2. For testing algorithms, directly interacting with the model and using it

as an object of influence (for example, the study of the protocol

convergence or topology properties).

3. For testing algorithms, which use network only for communication, and

do not influence it directly. (e.g., the study of the worm propagation

through the network)

Simulation system according to the authors of [3] should have the following

components:

1. Run-time environment necessary for the model functioning.

2. The model description, creation and management subsystem.

7

3. Analytical tools (e.g. monitoring tools) and experimental data

simulation.

Also will be useful following components:

4. Subsystem of emulation time management.

5. Experimental data visualization.

Proper time management is important for several reasons ([3]):

1. Synchronization between different nodes (for example, for the correct

tracking of log files, or for the correct modeling of the experimental

load)

2. With the ability to change the time, you can compensate some of the

delays. You can also slow down time (lowering performance) to

achieve the effect on a particular node of seeing the outer systems more

efficient (however, it is primarily a feature of emulation, not

simulation).

In my opinion it should be clarified which uses simulation and emulation and

where. Usually one node topology is emulated, i.e. it creates a virtual system (e.g.

container), which performs some operations (for example, generates network

traffic, handles requests to the database ...). However, considering the network as a

whole, it is correct to speak of the simulation, because another type of problems

are been challenged (e.g. alignment of delays between all connections (real and

emulated that connect two virtual systems in a single host)). Thus, there is a

mixture of emulation and simulation, which should always be borne in mind. As a

result, for example, in [6], which tells about MaxiNet, based on Mininet (software

that allows you to emulate the system based on the containers within a single host),

authors prefer to call their system emulator. On the other hand, for example, in [5],

which tells about PRIME (scalable simulation system for productive servers)

authors talk about their product, as a simulator. And this is correct, but sometimes

in different papers authors are mixing this concepts.

Simulation and emulation always have limitations, it is necessary to monitor

the correctness of the model, because it must correspond to the experiment to give

satisfactory conclusions. The model should not be too general and neglect

important experimental parameters. Thus, for example, it can be quite difficult to

carry out stress testing for some real equipment or simulation does not allow

finding some types of the bugs in the applications and their configurations.

8

Network simulation is a compromise between the detailed network

description, the complexity of the network, accurate behavior predictions and

configuration complexity of the model ([3]).

6 Linux Containers

 General information about Linux containers

It is expected that Linux containers are being profitably than virtual machines,

because there is no extra operating system for each virtual machine.

As part of OpenVZ the possibility of transferring the container to other

equipment on the fly are developed (the project named "CRIO"). However, it is

better to create applications, so that they can be at any time deleted and recreated

that is creating "stateless" applications4.

One of the most convenient features of the container is its mobility in terms of

rapid deployment. It also enables repeatability of the experiment designed in the

form of a container. It is very suitable for research ([4]).

In paper [7] authors tested the possibility of monitoring systems and the

number of containers that can be run simultaneously. They used Dell PowerEdge

1950 server with two Quad-Core Intel Xeon E5430 (2.66GHz) processors, 8GB

RAM and Gigabit Ethernet NIC. For testing, they used OpenVZ containers, with

launched apache, and as a client, they used wget. This choice was made because

they intended to load not processor and memory, but block I/O and network

interfaces. As a result, the equipment allowed running on the server 600 containers

simultaneously.

 Internals of Linux Containers

Main types of resources available in system is CPU, RAM, network and block

I/O. However, for executable process there is extra “resource” - environment:

process signals transmission, user id, file system ... Container tasks combine the

main tasks of the hypervisor and operating system: management of physical and

logical resources, support for environment variables and implementation of inter-

process communications.

4 Application integrity and fault tolerance against a sudden errors must be implemented by the application itself in
the first place, but not by the environment (container)

9

 Namespaces

Namespaces represent a group of processes having access to some particular

resource or environment element. When implementing the container, i.e. isolated

environment for processes execution, it is necessary to imitate next scopes for each

virtual entity:

1. File system namespace. It can change its structure and its access rights

to individual parts (can be emulated in different ways5, allows realize

innovative solutions, such as the distributed file system UnionFS)

When creating a new scope, all parameters will be copied from the

current scope, in which process works. Mounting of different partitions

is not seen across the scopes (unless the process of the scope enables it

to be seen), but mount made in host machine will be seen to everyone.

2. Network namespace. Enables the isolation of virtual devices, ip

addresses, rules and routing tables, filters, open sockets ...

Network interface and socket may simultaneously belong to only one

network scope, but been transferred to another. In practice, usually,

virtual interface is created in each container (for each network scope),

via which the Linux-bridge mechanism is connected with other network

interfaces and host.

3. UTS namespace (unix time-sharing). This gives the possibility to

change the name of the host (hostname) and NIS domain name for

processes within the appropriate scope in a data structure returned by

command "uname".

4. IPC namespace. Within this scope, processes can use means of

interprocess communications (IPC) between themselves (shared

memory, semaphores, messages queues) isolated from other scopes.

5. PID namespace changes the number of process within a specific scope.

Usually process has two identifiers, one within the namespace, and

another across the system, but if the process is in several scopes, then

greater number of identifiers can be assigned.

Depending on processes scope, the folder "/proc" will be simulated for

it accordingly.

6. User namespaces (UID/GID) allows processes to work simultaneously

on behalf of different users, depending on the scope. (For example, the

5 It is considered as an extension of the possibilities offered by "chroot"

10

processes user id can equal to zero within a container, but it will not

have privileged rights outside the namespace)

There were additional namespaces discussed in the world of IT:

1. "Security namespace" - the scope to isolate the security policies, and

"Security keys namespace" (the aim is to provide a place to store

security keys isolated from each other). However, they are still not

developed, and the only security mechanism is based on "user

namespace", additional security must be implemented by other means

(e.g. SELinux).

2. "Device namespace" ([15]). Existing capabilities allow isolating

network devices and file systems in their scope, but lacks the

possibility of isolation and separation for other devices on Linux.

For example, this could come in handy in Android devices, to organize

two phones in one, so that human work and personal phones are not

mixed and have been isolated from each other, which would increase

the level of security. It also will enable companies to introduce more

strict policy on the corporation phone part.

Note that in this case it is necessary to solve the problem of interactive

scenarios: “which container should have pass access at the moment?”,

for example when the screen is touched by the user. (Giving

simultaneous access to both containers will not be safe solution because

the container could interfere into operation of other container and

specific device).

However, this concept also touches another subject in the context of the

scope – saving the state. It is needed, because division between

corporate and personal entities in phone is constant. System that will

cope with this task must be created. Considering Docker as one of the

possible alternatives is not a good idea, because despite the fact that it

can somehow cope with this task (freezing containers, creating images

and deploying them when the system is rebooted), it is still a system for

bigger purposes and is not optimal for discussed problem.

In 2013, discussions began about creation of "device namespace", were

created patches for the Linux6, but as the full commissioning of this

technology involves rewriting a lot of drivers for various types of

devices, the work has not yet been continued.

6 https://github.com/Cellrox/devns-patches/wiki/DeviceNamespace%3APatches

https://github.com/Cellrox/devns-patches/wiki/DeviceNamespace%3APatches

11

3. "Time namespace". This type of scope implies processes see their own

time in each namespace. This idea is not widespread, perhaps because

the developers did not really need it; it is much easier to make the

necessary changes with time directly in application.

Scopes for processes are recorded as files in a virtual file system on the path

"/proc/<pid>/ns".

Related processes communication (pipes) are not altered, i.e. if the related

processes are in different scopes, they can still use these methods to communicate.

 Cgroup

Cgroup (Control group) are used to control resources. It sets scopes

associated with a set of parameters and constraints. Process groups may be

arranged hierarchically in a tree structure inheriting the parameters of each other.

Cgroup controls network, memory, CPU usage and block I/O, that is, it is a tool for

group resource management and offers advantages:

1. Limiting the resources. For example, it can be configured to control the

memory limit or control access to block devices.

2. Prioritization. Some groups may get more CPU time and disk I/O.

3. Resources accounting: measuring the amount of resources that are used

by certain processes.

4. Control. Freezing groups of processes, saving intermediate states and

restart.

To implement these features control groups have various subsystems:

1. blkio - subsystem limiting input\output of block devices (disk, usb, ...).

You can specify the priority in each group for each device (can be

specified for both reading and writing (op/s or b/s))

2. cpu - subsystem, which uses the task scheduler to distribute access to

the CPU.

It allows specifying the priority, but cannot set hard limits on the

distribution of CPU time. Thus, we can define the percentage of CPU

time that will be given for the group; however, these relations can be

violated in case the machine is overloaded.

3. cpuacct. This subsystem generates automatic reports of cpu usage by

control groups.

12

4. cpuset - subsystem designed to match the selected control group and

specific processor cores or memory slots7.

5. devices - subsystem controlling read/write access permissions for

device.

6. freezer is a subsystem for stopping and continuing processes in the

control group.

7. Memory. This subsystem sets limits on the amount of memory used by

the control group, and generates automatic reports on memory usage.

Limitations for the control group can be set simultaneously in two

types: hard and soft limits. Soft limits are not coercive, but hard limits

will lead to immediate action, such as freezing processes in the control

group, or removal of processes, changing limits, notice userspace …

8. net_cls. This subsystem marks traffic with labels called "classid",

allowing traffic controller on Linux to determine the source of the

package. It is necessary for correct functionality of tc/iptables.

9. net_prio allows to dynamically prioritize network traffic for different

network interfaces, that will be considered in queuing. Processes only

outbound traffic.

10. hugetlb allows limiting support for large memory pages in the Linux

kernel (This subsystem is not widespread and is hardly ever used).

11. perf_event allows to track resource usage by control group in general,

as a single process with the utility "perf".

Management of control groups is made through file system, i.e. delete/create

directory, mount directory into "/cgroup" or into "/sys/fs/cgroup" for systemd. The

file subtree is virtual, and all changes will be lost after reboot. Folder names do not

matter, but matter flags, which is used to mount directories. Hierarchy of controls

can be created in file system. When you create a control group, files that specify

necessary settings are created, for example, PID or TGID of cgroup processes.

"Systemd" based systems have some differences, but the functionality is identical.

 Namespaces and Cgroups technologies together

Namespaces technology allows creation groups of processes that have

different views on the available resources within a single operating system, and

cgroups technology, allows controlling groups of processes, non-connected with

7 Memory fixation between processes may be very important for multiprocessor systems (e.g. NUMA)

13

each other, and can be used both separately and altogether. Moreover, scopes of

namespaces and cgroups can be quite different.8

Thus, altogether, namespaces and cgroups may be used as required in

particular project, and there must not be used all features they present, they are

very flexible. At the same time, they provide the main goal of virtualization: the

control of resources and isolation.

However, the above technologies have the following drawbacks9:

1. Sometimes it is difficult to change the namespace (or control group)

from one to another. This is mainly due to the non-obviousness of the

API or some dependencies and access rights.

2. Drawbacks of hard resource division. This applies to those resources

which limits are specified by priorities and not in absolute values. It is

concerned the use of CPU and block I/O operations.

In general prioritizing works properly for resource division until there

is enough resources, but if system is overloaded, the division of

resources gain an unpredictable manner.

3. The security problem of control areas and namespaces. RedHat

disabled namespaces by default in Linux 7.1, because they believes that

the technology is not yet sufficiently developed and community need

better understanding of consequences of this technology for system

security and must be reduced the security risks to eliminate any attack

vectors associated with this technology.10

The most common problem is a problem of inconsistency between

namespaces and cgroups scopes. This, for example, can lead to the

following consequences:

1. Some system calls, and some parts of virtual file system may be

accessed to retrieve information, which must not be available for

container.

2. Container processes, despite the fact how much resources it is

permitted to use by means of cgroup boundaries (for example,

8 Previously each cgroup scope corresponded to some namespace scope, but this concept were refused.
9 Because of the fact that technology is still evolving, some features have not yet been implemented, and some
drawbacks are still not known.
10 In September 2015 namespaces are included in the RedHat distribution as a "Technology Preview". Until then,
one of the key communities that have been developed these features was Fedora community, which enabled
namespaces in their distributions. (http://rhelblog.redhat.com/2015/07/07/whats-next-for-containers-user-
namespaces/).

http://rhelblog.redhat.com/2015/07/07/whats-next-for-containers-user-namespaces/
http://rhelblog.redhat.com/2015/07/07/whats-next-for-containers-user-namespaces/

14

cpu and memory), can see the list of all resources in the system:

both accessible and forbidden.

For example, a file system privately mounted in some scope will be

visible to all utilities using mount, because it takes the information

from the "/etc/mtab" file, while the actual available mounting points are

stored in "/proc/mounts". Thus, despite the fact that access to a mount

point in a file system is not available, we know about its existence

([11]).

The LSM systems (Linux Security Modules), for example, SELinux,

AppArmor, GRSEC, - are not properly thought about in terms of the

namespaces and cgroups. Combined work of these technologies are still

under discussion, and in fact did not reach the issue of implementation.

Thus, the only privilege separation way is "userspace namespace",

allowing to change the UID/GID, isolation of super user (super user

within the container is not the one in the host system), and the

mechanism CAP_SYS_ADMIN, which allows division of super user

privileges among different users.

 Linux Containers (LXC) as an approach to virtualization

Linux Containers (LXC) can be considered as a technology and as a concrete

implementation. Linux Container (LXC) is a technology that combines cgroups,

namespaces, chroot, Linux Security Modules (LSM) and Mandatory Access

Control (MAC) and provides a more abstract interface for Linux user, for

organization of virtualization at the OS level. In practice, this translates for the user

as a set of features in userspace, mainly for cgroups and namespaces, at a more

abstract level (Figure 1 shows the level at which operates LXC).

15

Figure 1. Linux Container Technology Stack

LXC implementation allows you to work with containers controlling

necessary parameters on the basis of which namespaces and cgroups are created:

hostname, the first process and its UID/GID, network settings, file logging, mount

points in the file system and rights, setting any cgroup parameters, SELinux

context, interceptors for certain events that happen within the container, you can

also pass additional environment variables.

LXC support compatibility with "Copy on Write"11 functionality based on

specific file systems, which allow forming a cascade-united mount (for example,

AUFS). This allows you to run many identical containers based on a single

instance in file system. The changes made by each container recorded separately

and can be used to create new file system image after user request, taking into

account all the changes. This approach allows you to run in a very short time a

great number of containers saving a lot of time and resources.

Comparing OpenVZ and LXC features ([21]), the only LXC weakness

compared to its opponent is the lack of ability to control the quality of service

provided by block I/O. In addition, unformally it is considered that the containers

within OpenVZ are safer (better isolated and more secure) in comparison with

LXC.

Of the possible LXC drawbacks, there can be enumerated absence of

automatic containers backup, possibility of recovery in case of crashes and the lack

of centralized tools for network management. However, the first two disadvantages

are the area of applications responsibility by themselves in first place but not

containers. A final drawback is the responsibility of the utilities involved in the

11 Combined work of containers and shared file systems actively used in Docker project.

16

orchestration. History has shown that main drawback lies in the API provided by

LXC, it is not optimal to be used by management projects (e.g. Docker), which is

why they moved to its own implementation of the concept LXC called

"libcontainer". Another significant disadvantage is unproven security of LXC

containers 12 , that is why it is recommended to use some system of rights

differentiation, when using LXC containers (for example, GrSecurity or SELinux).

At last, the lack of container migration without closing and restarting must be

pointed out as the disadvantage (the project named "CRIO" based on OpenVZ has

some noticeable results).

 Docker - lightweight virtualization management system

Docker provides opportunities for the deployment of applications formalized

as containers; provide resource management and setting limits. In fact, Docker

approached the concept of treating the infrastructure as an application, which leads

to the fact, that Docker images do not have dependencies, they are self-sufficient.

Docker has a client-server architecture: daemon controls images and

containers, and client sends commands and can be positioned on any other

machine. Docker works with three main entities: Docker image - a pattern that is

available only for reading, it is the basic unit of distribution (distributed in the

format "Dockerfile", containing the image related information and instructions for

the correct preparation of the necessary resources to run the container), Docker

registries - storage of images13 and Docker containers - executable entity that can

be started, stopped, destroyed …

Docker, using the concept of Linux Container 14 , provides the following

features:

1. Deployment of containers on multiple machines; the Docker image can

be started on any machine that supports Docker technology.

2. Automatic assembly: the creation of containers with regard to

configuration management systems (e.g. Chef, Puppet, Maven, Ansible,

Salt, ...)

12 This problem occurs primarily due to the security problem with namespaces and cgroups technologies.
13 Publicly available Docker Hub is an example of Docker images repository. Repositories can be both public and
private.
14 Initially, the Docker project was based on technology LXC, but moved to its own implementation of Linux
Containers called "libcontainer" (it is believed that this happened, because LXC provided too high-level interface,
which did not satisfy the requirements of Docker).

17

3. Versioning system for Docker containers working similar to version

control system named "git", memorizing the changes within the

container.

Exists the ability to support public and private repositories, such as

"Docker Hub".

4. Reusing components: each container can be used as a basis for the

creation of another container.

5. Instrumentation: CLI (command line interface) and REST API are

available to manage Docker.

Docker must be treated as a mean for containers distribution and automation

of its launching. However, despite its potential, he cannot act as a full

virtualization platform because some valuable features are missed or do not have

proper degree of development, e.g. components for logging, authentication,

statistics collection, orchestration. Thus, Docker can be used to create more

complete systems, which allows managing large virtual computing systems (e.g.

data centers). However, this does not mean that it cannot be used alone for some

types of systems that does not require the traditional structures for cloud

computing.

In opensource, it is often said that Docker is very easy to use, which leads to

some misunderstandings in general public. It should be understood that Docker is

another management tool designed to simplify the deployment of Linux containers.

If the project does not use containers, then Docker usage will only add complexity

to the system, which will be located in the area of administrator’s responsibility.

From the viewpoint of the administration, it will be necessary to control ([20]):

1. Orchestration container, which has to be deployed instantly, without

any delay.

2. Orchestration container should be able to roll back other containers and

settings.

3. It is necessary to maintain network between containers on multiple

hosts.

4. Support system for collecting telemetry from various containers.

5. Centralized collection of log messages from all containers.

6. Processing containers data (databases, object storages, file systems ...).

It is also necessary to set rules, according to which data will be saved or

deleted.

18

These capabilities must be maintained for a scalable system, and you will

have to either use a system like OpenStack, changing it to use Docker as a

hypervisor15, which allows you to run multiple virtual machines, or in some way to

adapt the "Configuration Management Tools" (for example, Ansible, Chef,

Puppet). Also, these systems will be responsible for the deployment of machines

with running Docker-servers ([20]). However, all of these approaches are ways to

adapt the existing control systems with different purposes. Also, their adaptation

will be complicated because Docker API and its internal structure are undergoing

great changes from version to version, which makes it difficult to use some of the

features and hard to tune the Docker usage.

Docker does not simplify application development by itself, and do not

attempt such a task. Developers still have to implement security, principles of least

privilege, think about making checkpoints, monitor the behavior of the critical

services, create documentation ... ([20])

Comparing with virtual machines Docker security level is lower because

containers interacts with the operating system kernel more.

Docker allows you to configure all main namespaces when starting container

(PID, UTS, IPC, network, user security configuration) and all major cgroups

(Memory, CPU, Block IO, Network adapters). In the parameters of memory, you

can specify soft and hard limits onto the swap file, total amount of memory and

available memory blocks in the case of NUMA systems. For the processor, you can

specify the number of each core, which may be used by container and the priority

of the container, according to which, task scheduler will divide CPU time between

them. However, there is no possibility to set absolute limit for CPU usage for

container. A similar flaw is present for block I/O. It is possible to specify priorities,

but you cannot set hard limit for read/write operations.

This drawback is very important for actual systems (for example, for hosting

services), and for the simulation systems, for example, in case we need to simulate

the behavior when some nodes are overloaded.

If we consider a competitive system called virtuozza16 based on OpenVZ

technology, they support additional opportunities to limit resources. It is possible

to set hard limits for container on CPU usage; you can set a quota or indicate

priorities for the block I/O for each container, or for each individual user.

15 This decision is wrong because we should not build one management system on top of another management
system. It is much more productive to use LXC directly from OpenStack (how it is done already).
16 Project is commercial and works only for specific Linux distribution.

19

 Comparison of Linux containers and virtual machines

Virtual Machines are safer compared to containers because have less

interaction with the kernel of host system, and consequently, they potentially have

less vulnerabilities. In addition, hypervisors can run different operating systems.

On the other hand, the container has a number of advantages:

1. As in case of using containers there is no additional operating system

on each guest, it speeds up comparing with the hypervisors. All of the

hypervisors use the hardware support (e.g., VT-x, VT-d, AMD-V) and

unlikely to improve productivity in the future.

The article [22] investigated the question of efficiency comparing LXC

and Docker containers, KVM hypervisor and non-virtual system

performance. The performance characteristics of CPU, memory, block

I/O, and network studied separately. In [8] authors studied the same

question, but network performance in different modes studied in more

details. As a result, the following conclusions can be pointed out:

1. Performance calculations for the processor and memory access

(both random access and serial) hardly depends on the type of

virtualization and slows down no more than 2-3%.

2. Block I/O performance for containers is not so different from the

performance without virtualization. However, for KVM the serial

access is almost the same, while the random access is two times

slower, comparing to native system, because a single reading

operation request more CPU cycles.

3. For the network performance analysis, the results vary greatly.

For example, when using NAT in Docker and KVM results in

doubling RTT (round trip time), comparing with native

performance for both types of traffic: TCP and UDP (it is worth

saying that KVM was slightly faster than Docker).

For hypervisors (KVM) exist acceleration technologies17, which

excludes overhead on sending stage, but when receiving the

traffic overhead is twice bigger comparing with containers.

Docker overheads was about 20% comparing to the non-virtual

system, both when sending and receiving TCP traffic.

Measuring each characteristic separately is not a valid solution for

performance comparison, because in this case, the overhead based on

17 Technology is based on bypassing hypervisor and using special drivers.

20

the use of the operating system kernel and its context changes is not

considered. This is why, in article [8] authors investigated performance

of databases MySQL and Redis (data structure server). In case of

MySQL, the overhead for containers equals 2%, while for the KVM -

40%. In the case of Redis, performance problems appeared primarily

for network communication: for Docker with NAT took place

additional load on CPU, and KVM increased the delay. As a result, the

number of requests processed on the KVM were 10% less, and for

Docker 20% less, compared with non-virtual system.

2. Using OS-level virtualization it is easy to implement sharing of

resources, such as memory and block I/O (for example, "shared

memory" or "AUFS"), while the hypervisor is almost incapable of it.

("shared memory" technology in OpenVZ containers even enables to

run single instance of binary executable for many containers running

the same program)

It also allows running multiple containers in a short period of time, as

they can use a single copy of the file system.

3. Containers are more flexible in the redistribution of resources on the

fly.

 Containers in modern world

Containers in a networking world can be viewed from the perspective of two

different concepts: the concept of NFV (Network Function Virtualization) (i.e.,

how containers are suitable for the implementation of network function

virtualization) and the concept of network modeling (for testing and modeling).

Containers also can be considered in terms of the opportunities that they provide

for ordinary applications using network interfaces.

Usage examples for containers for NFV concept can be:

1. Transfer of services implementation provided by operators for the

companies and their subsidiaries from routers into operator’s data

centers, and creating channel between router and data center (examples

of services can be firewall, NAT, DPI ...).

2. Transfer services implementation provided for individual people into

operator’s data center (example of service can be filtering "adult

content").

21

Containers in the simulation can be used to research the network as a whole

(for example, the speed of information expansion through given topology (either a

worm or some routine information on the network), or check the protocol

convergence) or simulate the network for test object (for example, SDN controller

or CDN ([5])).

Large network model usually runs many containers of the same type, and it is

very important to use such file systems as AUFS, because it saves a lot of space on

file system, and significantly increase the speed of model deployment. It is also

very important to be able to control the load on the server when creating a model

and detect the presence of overloads, distorting the experiment.

When using a container for NFV implementation it is very important to be

able to attach the container to a processor core, to minimize overhead of context

switching. In addition, it should be possible to give access to the network card

driver, because it is important to use different hardware accelerations, like DPDK.

In article [3] authors says that the simulation system NPS can be used for

studying problems such as spread of malicious software on the network, the

routing protocols convergence, testing network performance (maximum

throughput of a certain node, overall level of delays and losses) and development

of web applications.

For common applications, it is required the ability to run under containers

without any changes to its functionality.

7 Container-based modelling

 Examples of existing modelling systems

There are many network emulators: Mininet, Mininet-Hifi, vEmulab, PRIME,

NetKit, Trellis, CORE, Estinet (commercial example), OMNeT++. There are also

some add-ons that complement some systems, allowing creation of distributed

network models: MaxiNet, NPS. There are specialized modelling systems, for

example, RINSE ([1]), which purpose is to provide a model for the network

security training.

Mininet is an opensource software, faster than most of its counterparts, such

as vEmulab ([4]) and has the necessary capabilities, what makes it quite popular.

For every emulated host Mininet creates a separate container in which defines

network namespace in such a manner that container has network interface

connected to some software router (for example, Open vSwitch (there may be

several on a single host)). Mininet makes no guarantees about the performance,

22

unlike vEmulab, which can limit the bandwidth speed. Thus, Mininet uses a single

container opportunity: network namespace.

PRIME focuses on modeling within multiprocessor machines with shared or

distributed memory ([5]). This system was successfully used to simulate the

network with 45 000 nodes for CoralCDN testing.

Mininet-Hifi (high level of confidence) is based on Mininet and additionally

provide performance limitation, resources preparation and performance

monitoring, enabling the control of throughput performance, queue performance

and delays ([4]).

Maxinet and NPS (Network Simulator Prototyping) represent a system which

using Mininet create a distributed network between multiple independent hosts.

This allows increasing the number of simulated nodes up to thousands. Maxinet

does not use OpenVSwitch as a router, because it poorly works on hosts with

multiple interfaces ([6]).

NPS system allows connect and configure each instance of Mininet running

on the cluster (Cluster Node) using Supervisor Console. For traffic management

within and between the clusters used OpenFlow controllers ([3]).

There have been successful attempts to construct a distributed system based

on vEmulab using as containers FreeBSD jails. However, not all network

emulators are suitable for the construction of distributed models: for example,

Estinet design is difficult to be scaled ([6]).

 Basic requirements of modelling systems to lightweight virtualization18

Such modeling systems as vEmulab, Mininet, NPS allows virtualize host,

router and network, maintaining the transparency for the application, performance

accuracy, possibility of interactive work, reproducibility of the experiment and the

efficient use of resources ([3], [9]).

Simulation requires following features:

1. The model performance have to match the performance of today's

networks. In the first place it is needed for network applications which

take into account network latency.

2. Flexibility of simulation system (creation of a wide variety of

topologies, and use of various applications and simulated subsystems)

18 Paragraph uses information based on the articles [3], [4], [6], [9]

23

3. The ability to scale modeling system under several computer systems.

The increase of the modeled network should linearly depend on the

number of computer systems. Must be solved the problem of irregular

delays between nodes on single host system and on different systems

(difference must be not significant or it is necessary to take steps to

straighten time between the virtual nodes ([6]))

4. Low model cost, what means high performance of the model, what

means overhead minimization.

5. Simulation reproducibility (this can be ideally solved by using

containers feature of “packing the environment”)

6. Application transparency from both: external and internal points of

view, i.e. on one hand, the model should be provided for external

application as set of hosts, on the other hand, every application running

within the host should see the model as the network infrastructure.

There should be no problem if you need to connect model to the

Internet.

It should be appreciated that applications such as tcpdump, may be

particularly sensitive to the method of emulation, since they work

primarily not with ip addresses but with network interfaces.

7. Load measure methods are needed for model, to be able to confirm

correctness of the experiment. In addition, resources limitation methods

also needed, with the aim of studying the behavior of the overloaded

model node by fixing load on required nodes and connections.

Usually load control utilities created separately from the model, but the

model must be customized to be able to control the distribution of

virtual nodes and communication channels on top of the computer

system and must have API to communicate with load control utilities.

8. The ability to run a large number identical model parts (important

limitations, such as the maximum number of virtual interfaces, the

maximum number of processes ... in Linux systems must be big enough

not to be reached).

9. The possibility of interactive interference in the model.

Requirements unsupported by container’s implementation because of their

absence or imperfections:

1. There is no way to limit the bandwidth of the virtual interface, provided

for container. Also in case where a single host runs many containers,

24

without possibility of correlation processor cores and containers, we

have to set CPU priorities, therefore there is no means to fix

performance of each container.

2. In real world systems is already approaching the limits of Linux

systems concerning number of possible resources, such as virtual

network interfaces or number of processes.

3. There are problems with the statistics collection regarding memory,

CPU and Block I/O usage. And if the overload is created by one single

container, it is hard to identify it. It leads to the problem of DoS

(Denial of Service) prevention, in case one of containers uses too many

resources.

 Lightweight virtualization capabilities of controlling resource allocation

There are two principal ways of controlling resources in terms of modeling:

the first way is to limit the resources of each container using its built-in

mechanisms (this is done via cgroups, however, this approach is not self-

sufficient), another way is to monitor the load degree on the computer system and

run within one host as many containers as it can handle without overload. For

realization of the second approach, must be created an additional tool for

monitoring and automatic change of model, depending on ongoing situation. Just

remember about "Heisenberg uncertainty principle", which in this case means that

detailed monitoring can influence the system and decrease its productivity 19 .

Depending on the model, overload while running the experiment can result in a

failed experiment or the experiment can be considered uncorrupted if the

overloaded computer node will be migrated immediately.

In paper [4], it has been empirically determined that CPU idle index can be

used as a good criteria to look after computing nodes utilization. According to the

authors of paper [3], the LXC container-based network simulation can give high

precision if there is no unplanned overloaded model elements.

8 Conclusion

Containers in the past few years have been actively used in the area of

lightweight virtualization (e.g. NFV), and simulation. Their abilities (flexibility,

productivity, self-sufficiency, low overhead) proved to be very useful for network

19 In paper [7] were given specific numbers: system measurements every 0.001 seconds significantly reduces its
performance, however measurements every 0.01 seconds were almost insignificant.

25

simulation. However, simulation requires not only virtualization (i.e. control) of

network in operating system, but also many other resources: CPU, memory, block

I/O, networking. Not all desired features are implemented in containers, for

example, they lacks the ability to limit control of CPU resource, there are problems

with security and not enough capabilities for device separation between

namespaces.

However, containers have its benefits. They allow sharing resources between

multiple container instances in a manner that is unavailable for hypervisor-based

virtualization (for example, sharing of file system or virtual memory). It allows

reducing costs per container by creating a large number of similar containers that is

often happening during network simulation and in real world. As a result, it leads

for some considerable accelerations comparing to traditional hypervisors.

Management systems are created for lightweight virtualization (e.g. Docker),

however they still have some drawbacks (for example, orchestration limitations),

which probably will be fixed in the future.

Thus, lightweight virtualization capabilities are very well suited for network

modeling, where it is needed to create many similar nodes.

The goal of the essay has been achieved, after discussing of different benefits

and drawbacks of lightweight virtualization, which compared to the functional

demands of modelling systems.

9 References

1. Liljenstam M. et al. Rinse: The real-time immersive network simulation

environment for network security exercises //Principles of Advanced and

Distributed Simulation, 2005. PADS 2005. Workshop on. – IEEE, 2005. –

С. 119-128.

2. Im E. G. et al. Hybrid modeling for large-scale worm propagation

simulations //Intelligence and Security Informatics. – Springer Berlin

Heidelberg, 2006. – С. 572-577.

3. Antonenko V., Smelyanskiy R., Nikolaev A. Large scale network simulation

based on hi-fi approach //Proceedings of the 2014 Summer Simulation

Multiconference. – Society for Computer Simulation International, 2014. –

С. 4.

4. Handigol N. et al. Reproducible network experiments using container-based

emulation //Proceedings of the 8th international conference on Emerging

networking experiments and technologies. – ACM, 2012. – С. 253-264.

26

5. Liu J., Li Y., He Y. A large-scale real-time network simulation study using

prime //Winter Simulation Conference. – Winter Simulation Conference,

2009. – С. 797-806.

6. Wette P. et al. Maxinet: Distributed emulation of software-defined networks

//Networking Conference, 2014 IFIP. – IEEE, 2014. – С. 1-9.

7. Jia Q., Wang Z., Stavrou A. The Heisenberg Measuring Uncertainty in

Lightweight Virtualization Testbeds //CSET. – 2009.

8. Felter W. et al. An updated performance comparison of virtual machines and

linux containers //technology. – 2014. – Т. 28. – С. 32.

9. Hibler M. et al. Large-scale Virtualization in the Emulab Network Testbed

//USENIX Annual Technical Conference. – 2008. – С. 113-128.

10. “Cgroups” [Electronic resource]. / Paul Menage. – Access Mode:

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

11. Rosen R. Resource management: Linux kernel Namespaces and cgroups

//Haifux, May. – 2013.

12. “Resource Management Guide” [Electronic resource] / Red Hat Inc. –

Access Mode: https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/

13. Jerome Petazzoni. Container's Anatomy. Namespaces, Cgroups and some

filesystem magic // 19 Aug. – 2015

14. Boden Russell. Realizing Linux Containers (LXC). Building blocks,

Underpinnings & Motivations // 11 Mar. – 2014

15. “Namespaces in operation, part 1: namespaces overview” [Electronic

resource] / Michael Kerrisk. – Access Mode:

https://lwn.net/Articles/531114/

16. “Device namespaces” [Electronic resource] / Jake Edge. – Access Mode:

https://lwn.net/Articles/564854/

17. Reshetova E. et al. Security of OS-level virtualization technologies //Secure

IT Systems. – Springer International Publishing, 2014. – С. 77-93.

18. Kumar A. S. Virtualizing Intelligent River R: A Comparative Study of

Alternative Virtualization Technologies : дис. – Clemson University, 2013.

19. “Docker Docs” [Electronic resource] / Docker Inc. – Access Mode:

https://docs.docker.com/

20. “Docker misconceptions” [Electronic resource] / Matt Jaynes. – Access

Mode https://valdhaus.co/writings/docker-misconceptions/

21. “Feature comparison of different virtualization solutions” [Electronic

resource] / OpenVZ Inc. – Access Mode: https://openvz.org/Comparison

22. Morabito R., Kjällman J., Komu M. Hypervisors vs. Lightweight

Virtualization: a Performance Comparison.

23. Xavier M. G. et al. Performance evaluation of container-based virtualization

for high performance computing environments //Parallel, Distributed and

Network-Based Processing (PDP), 2013 21st Euromicro International

Conference on. – IEEE, 2013. – С. 233-240.

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/
https://lwn.net/Articles/531114/
https://lwn.net/Articles/564854/
https://docs.docker.com/
https://valdhaus.co/writings/docker-misconceptions/
https://openvz.org/Comparison

	1 Contents
	2 Introduction
	3 Introduction to the subject area. Definitions
	4 Virtualization
	5 Simulation and emulation
	6 Linux Containers
	6.1 General information about Linux containers
	6.2 Internals of Linux Containers
	6.2.1 Namespaces
	6.2.2 Cgroup
	6.2.3 Namespaces and Cgroups technologies together

	6.3 Linux Containers (LXC) as an approach to virtualization
	6.4 Docker - lightweight virtualization management system
	6.5 Comparison of Linux containers and virtual machines
	6.6 Containers in modern world

	7 Container-based modelling
	7.1 Examples of existing modelling systems
	7.2 Basic requirements of modelling systems to lightweight virtualization
	7.3 Lightweight virtualization capabilities of controlling resource allocation

	8 Conclusion
	9 References

